
Mécanique des fluides
Section de génie civil

TD 7 - Correction

Exercices

Exercice 1 On s’intéresse au débit Q s’écoulant dans une conduite cir-
culaire de diamètre d = 1000 mm. La conduite est en béton et le coeffi-
cient de Manning-Strickler vaut K = 80 m1/3s−1. La pente vaut i = 0,1 %.
Le tirant d’eau (c.-à-d. la profondeur d’eau maximale) observé est hmax =
80 cm.

1. Dessiner une coupe en travers de la conduite et indiquer le tirant
d’eau hmax, la largeur au miroir B, le périmètre mouillé χ ainsi que
la section mouillée S.

2. L’écoulement est-il à surface libre ou en charge ? Rappeler la force mo-
trice de l’écoulement dans chacun des cas.

3. Calculer le périmètre mouillé χ, la section mouillée S et le rayon
hydraulique RH .

4. Exprimer Q en fonction de S, RH , i et K selon la loi de Manning-
Strickler. Rappeler dans quel régime la loi de Manning-Strickler est-
elle valide. Est-ce le cas ici ?

5. Calculer Q selon la loi de Manning-Strickler.

Exercice 2 Soit un débit Q s’écoulant dans un canal de section triangu-
laire. A l’état neuf, le niveau d’eau correspondait à la marque L1 = 2 m sur
la paroi du canal (voir figure 1). Après plusieurs années d’utilisation, la
rugosité du canal a augmentée et le coefficient de Manning-Strickler K a
diminué de moitié. Calculer la valeur de la nouvelle marque L2 sur la paroi
du canal.

Exercice 3 Soit un canal rectangulaire de largeur constante où s’écoule
de l’eau à un débit par unité de largeur q = 0,52 m2/s. La hauteur d’eau à
l’amont d’une rampe de 15 cm est h1 = 69 cm (voir figure 2).
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Figure 1 – coupe en travers du canal.

1. Rappeler la définition de la hauteur critique hc, l’exprimer en fonc-
tion de q (partir de la formule du nombre de Froude) et la calculer.

2. Calculer la hauteur d’eau à l’aval de la rampe h2 en utilisant le dia-
gramme de la charge spécifique adimensionelle donné en cours (com-
mencer par écrire la charge totale et la charge spécifique à l’amont
et à l’aval de la rampe). On négligera les effets visqueux.

Figure 2 – profil en long de la rampe.

Exercice 4 Soit un écoulement d’eau en régime permanent uniforme dans
un canal trapézoidal de base b = 5 m. La pente des berges est de 45°(voir
figure 4). La hauteur d’eau observée est h = 4 m. Le coefficient de Manning-
Strickler, qui décrit la rugosité du lit, vaut K = 40 m1/3s−1.

1. Calculer la largeur au miroir B, le périmètre mouillé χ, la section
mouillée S et le rayon hydraulique RH .

2. Sachant que le débit vaut Q = 100 m3/s, calculer la pente i du canal.

3. Donner la hauteur normale hn. La formule hn = (q/(K
√
i))3/5, dérivée

de la loi de Manning-Strickler, est-elle valide ici (avec q le débit par
unité de largeur) ? Justifier votre réponse.

4. Calculer le nombre de Froude. Le régime est-il subcritique (fluvial)
ou supercritique (torrentiel) ?

5. Calculer la hauteur critique hc puis la comparer avec h. Faire le lien
avec la question précédente.
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Figure 3 – variation de la charge spécifique, H∗ = Hs/hc et χ = h/hc.

Figure 4 – coupe en travers du canal.

Exercice 5 Le long d’un canal de section rectangulaire, la hauteur d’eau
h entre une section amont et une section aval est diminuée de moitié. Le
nombre de Froude passe d’une valeur subcritique Fr1 = 0,5 à une valeur
supercritique Fr2 = 3. Sachant que la largeur de la section amont est B1 =
4 m, déterminer la largeur B2 de la section aval .

Exercice 6 Une rivière de montagne dont le lit est composé d’un gra-
vier grossier (d90 = 200 mm), arrive en plaine avec une transition brusque
de pente de fond : iam = 20,0 % et iav = 0,5 %. Sa largeur reste partout
constante : B = 4 m. Le débit en crue de cette rivière est de Q = 6 m3 s−1.
Un pont, s’élevant 2,50 m au-dessus du lit de la rivière, est situé 140 m en
aval de la transition de pente. Voir figure 1.
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Figure 1 : schéma de l’aménagement.

1. Vérifier la sécurité du pont au passage de la crue.

2. Existe-il un ressaut hydraulique causé par la transition de pente? Si
oui, calculer sa position.

Indications :
— Pensez à estimer la rugosité du lit à l’aide du d90 et ainsi pouvoir

utiliser une loi de frottement.
— Considérez les équations pour un canal infiniment large.
— Lorsqu’il y a passage brusque d’un régime supercritique à un ré-

gime subcritique, un ressaut se forme. Suivant les conditions hy-
drauliques, le ressaut peut se former dans la première partie de
l’écoulement ou dans la seconde. Utiliser la méthode de la courbe
conjuguée pour déterminer la position du ressaut

Exercice 7 Un canal rectangulaire de largeur B = 5 m et de longueur l =
1000 m a une pente i = 10−3. Le débit vaut Q = 10 m3/s et la hauteur d’eau
est de h0 = 3,1 m dans la partie du bief où la hauteur est uniforme. Ce
canal débouche ensuite sur deux canaux secondaires de même section et
de pente is = 1 % (voir figure 5).

1. En supposant que la résistance du lit peut être décrite à l’aide de
la loi généralisée de Keulegan, déterminer la rugosité ks du lit. On
prendra κ = 0,41 pour la constante de von Kàrmàn. Discuter la va-
lidité de cette formule dans notre cas.

2. Répondre à la même question en prenant la loi de Manning-Strickler :
que vaut le coefficient de Manning-Strickler K ?

3. Quel est le débit Q1 correspondant à une hauteur d’eau h1 = 4,5 m
dans le canal principal ? On répondra en utilisant les lois de Keule-
gan et de Manning-Strickler.
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4. Calculer le nombre de Froude Fr et le nombre de Reynolds Re pour
le canal principal lorsque le débit vaut Q1. On utilisera le débit
trouvé avec loi de Manning-Strickler. Caractériser le régime d’écou-
lement.
Rappel : pour les écoulements à surface libre, on utilise le rayon hydrau-
lique RH comme dimension caractéristique dans la définition du nombre
de Reynolds. On utilise souvent Re = 4RH Ū /ν, avec ν la viscosité ciné-
matique du fluide et Ū la vitesse moyenne de l’écoulement.

5. Quelle est la hauteur d’eau h2 dans les canaux secondaires pour un
régime permanent uniforme lorsque la hauteur vaut h1 dans le canal
principal ? On négligera le coefficient de perte de charge singulière
au niveau de l’embranchement et on se servira de la loi de Manning-
Strikler.

6. Que vaut la hauteur critique hc dans les canaux secondaires ?

7. Quelle est la forme de la surface libre? La tracer qualitativement en
plaçant les éléments remarquables.

8. On remplace les canaux secondaires par des canaux à section tra-
pézoïdale de base b = 3 m. Le fruit des berges est 1 :3. Calculer la
hauteur d’eau pour un canal secondaire en régime permanent uni-
forme lorsque le débit vaut Q1. Calculer le nombre de Froude.

Figure 5 – vue en plan du canal principal se scindant en deux canaux se-
condaires.
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Corrections

Exercice 1

1. Coupe en travers de la conduite cylindrique.

Figure 6 – coupe en travers de la conduite cylindrique.

2. L’hydraulique à surface libre se différencie de l’hydraulique en charge
par l’existence d’une surface libre, c’est-à-dire d’une surface où l’écou-
lement est en contact direct avec l’atmosphère. La conduite n’étant
que partiellement remplie d’eau, l’écoulement est bien à surface libre.
La gravité est l’agent moteur des écoulements à surface libre, alors
que, pour les écoulements en charge, c’est le gradient de pression.

3. Soit r le rayon de la conduite et θ l’angle tels que dessinés sur la
figure 6, on a

χ = r(π+ 2θ) = 2,21 m,

S = r2(
π
2

+θ + sinθ cosθ) = 0,67 m2,

RH =
S
χ

= 0,30 m.

4. D’après la loi de Manning-Strickler,

Q = SR2/3
H

√
iK

en régime permanent uniforme (c.-à-d. lorsque les caractéristiques
de l’écoulement, comme la vitesse et la hauteur d’eau, ne varient ni
dans le temps, ni le long de la direction d’écoulement). Ici, le débit
est constant dans le temps et l’écoulement est établi ; le régime est
donc permanent. La conduite est uniforme (toutes les sections en
travers sont identiques) et il n’y a aucun ouvrage hydraulique sus-
ceptible de perturber l’écoulement, le régime est donc uniforme.

5. Q = 0,77 m3/s.
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Exercice 2 Soit S1 la surface mouillée et RH1 le rayon hydraulique à l’état
neuf ; et soit S2 la surface mouillée et RH2 le rayon hydraulique à l’état
érodé. La pente du canal est notée i et l’angle que fait chaque berge avec la
verticale est noté θ.

Les surfaces mouillées peuvent s’écrire

S1 = L2
1 cosθ sinθ et S2 = L2

2 cosθ sinθ

et les rayons hydrauliques peuvent s’écrire

RH1 =
L2

1 cosθ sinθ

2L1
et RH2 =

L2
2 cosθ sinθ

2L2
.

Le régime étant permanent uniforme dans chacun des états, la loi de Manning-
Strickler permet d’écrire

Q = S1R
2/3
H1

√
iK pour l’état neuf et Q = S2R

2/3
H2

√
i
K
2

pour l’état érodé.

En égalisant les deux expressions pour Q et en substituant les expressions
pour les surfaces mouillées et les rayons hydrauliques, on trouve

L2 = 23/8L1 = 2,59 m.

Exercice 3

1. La hauteur critique hc est la hauteur d’eau lorsque le nombre de
Froude Fr = ū/

√
gh vaut 1, avec ū la vitesse moyenne de l’écoulement

et h la hauteur d’eau. Puique ū = q/h, avec q le débit par unité de
largeur, on démontre facilement que hc = 3

√
q2/g. Ici, hc = 0,30 m.

2. La charge hydraulique totale s’écrit

H = y + h+
q2

2gh2

avec y la cote du fond, h la hauteur d’eau et q le débit par unité de
largeur. La charge totale représente l’énergie totale du fluide en un
point donnée. Son expression est directement dérivée de l’équation
de Bernoulli.
Puisque les effets visqueux sont négligés, la charge totale se conserve
au passage de la marche. On peut donc écrire

y1 + h1 +
q2

2gh2
1

= y2 + h2 +
q2

2gh2
2

,

avec l’indice 1 référant à la section amont et l’indice 2 à la section
aval. En isolant h2 dans cette équation, on obtient une équation
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du troisième degré. Une alternative à la résolution de cette équa-
tion pour trouver h2 est d’utiliser le diagramme de l’énergie spé-
cifique adimensionnelle (donc vrai pour toute configuration) qui
donne la charge spécifique Hs en fonction de la hauteur d’eau h. Le
diagramme est disponible dans le cours.
La charge hydraulique spécifique s’écrit

Hs = h+
q2

2gh2

et représente l’énergie totale du fluide à une cote donnée (l’énergie
potentielle n’est pas prise en compte). En remaniant l’équation de la
conservation de la charge totale, on peut écrire

(h2 +
q2

2gh2
2

) = (h1 +
q2

2gh2
1

)− (y2 − y1),

ou encore
Hs2 = Hs1 − (y2 − y1).

La différence de charge spécifique entre les points 1 et 2 est donc
égale à la hauteur de la marche (c.-à-d. à la différence d’énergie po-
tentielle entre les deux points). Il suffit maintenant de lire sur le
diagramme la valeur de h2.
Pour cela, on adimensionalise les différentes variables d’intérêt en
les divisant par la hauteur critique hc :

ξ1 =
h1

hc
= 2,30 ;

H∗1 =
Hs1

hc
= 2,39 ;

H∗2 = H ∗s1 −
y2 − y1

hc
= 1,89.

.
Par lecture graphique, on a ξ2 = 1,7 ou ξ2 = 0,6, soit h2 = 0,5 m ou
h2 = 0,2 m (en multipliant par hc). La première solution est la bonne,
car pour la seconde si on suit la courbe cela voudrait dire au’il y au-
rait un gain d’énergie spécifique (car on remonte la courbe du dia-
gramme pour arriver à H∗2). Or un gain d’énergie spécifique (donc
gain d’énergie piézométrique ou cinétique) veut dire une perte d’éner-
gie potentielle donc une diminution de la cote y, ce qui n’est pas le
cas.
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On retrouve le même résultat en résolvant l’équation du troisième
degré (tirée de l’équation de la courbe)

H ∗s2 = ξ2 +
1
2

1

ξ2
2

pour ξ2.

Figure 7 – variation de la charge spécifique au passage de la marche.

Exercice 4

1. B = 13 m, χ = 16,31 m, S = 36 m2 et RH = 2,21 m.

2. L’écoulement étant permanent uniforme, la loi de Manning-Strickler
donne

Q = SR2/3
H

√
iK.

En résolvant pour i on trouve i = 1,7 · 10−3. La pente est de 0,17 %.

3. L’écoulement étant permanent uniforme, la hauteur d’eau h dans le
canal est égale à la hauteur normale hn. On a donc hn = 4 m. La for-
mule hn = (q/(K

√
i))3/5 n’est valide que pour des canaux infiniment

larges (c.-à-d. lorsque B est très grand devant h), ce qui n’est pas le
cas ici.

4. The general definition of the Froude number for shallow water flows
is the following :
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Fr =
Q

S
√
gS/B

.

Using this definition and replacing the numerical values, the value
is Fr = 0,53. Puisque Fr < 1, le régime est subcritique (fluvial).

5. La hauteur critique hc est la hauteur d’eau quand Fr = 1. Puique
l’expression de Fr en fonction de h est ici

Fr =
Q

(bh+ h2)3/2

√
g/B,

on a
BQ2

gS3 = 1 ou encore
(bhc + h2

c )3

b+ 2hc
− Q2

g
= 0.

En résolvant cette équation pour hc avec la méthode de Newton ou
autre, on trouve hc = 2,83 m.
Puisque h > hc, le régime est subcritique. Ce résultat était attendu
au vu de la réponse à la question précédente.

Exercice 5 Le canal est de section rectangulaire. Puisque

Fr =
BQ2

S
√
gS/B

==
Q

Bh
√
gh

,

on a
Q = Bh

√
ghFr.

En égalisant les débits des sections amont et aval, on obtient

B1h
√
ghFr1 = B2

h
2

√
g
h
2

Fr2.

En résolvant pour B2 on trouve B2 = 1,89 m.

Exercice 6

1. On suppose que h = hn au niveau du pont. En utilisant la formule de
Jäggi, on calcule K = 23,2/d1/6

90 = 30 m1/3 s−1. L’équation de Manning-
Strickler pour un canal infiniment large permet d’écrire :

hn2 =
(

Q

BK
√
iav

)3/5

= 0,81 m. (1)

On trouve hn2 < h0, donc la sécurité du pont est assurée. Note :
comme 1,3 m est du même ordre de grandeur que B l’hypothèse du
canal infiniment large est discutable, ici on l’a choisie uniquement
pour simplifier les calculs.
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2. On détermine tout d’abord le régime d’écoulement pour les tronçons
1 (amont) et 2 (aval). Pour cela on calcule la hauteur normale hn1
dans le tronçon 1 et la hauteur critique hc (hauteur d’eau pour Fr
= 1) :

hn1 =
(

Q

BK
√
iam

)3/5

= 0,27 m (2)

hc =
(

Q
B
√
g

)2/3

= 0,61 m (3)

On trouve hn1 < hc < hn2 m. L’écoulement passe donc d’un régime
supercritique à un régime subcritique, il y a donc un ressaut qui
se forme au changement de régime. Dans la zone où se produit le
ressaut, l’écoulement est très turbulent, localement la hauteur d’eau
peut être importante avec une forte érosion. On va donc déterminer
la position du ressaut. Pour ce faire on va utiliser la méthode de
conjugaison. Il faut commencer par tracer l’allure des courbes de
remous en résolvant l’équation de Bresse pour une loi de Manning-
Strickler (équation 5.12 p. 109 du cours)

dh
dx

= i
1− (hn/h)10/3

1− (hc/h)3 . (4)

Dans le premier tronçon l’écoulement est partout supercritique car
hn1 < hc, le ressaut n’y aura pas lieu. Le ressaut va se situer quelque
part dans le deuxième tronçon, nous allons donc tracer la courbe de
remous afin d’estimer à quel endroit aura lieu le ressaut. On doit
donc résoudre numériquement l’équation 4. La résolution de cette
équation peut se faire de plusieurs manières numériquement, soit
avec l’outil de Matlab ode45 ou alors en utilisant les différences fi-
nies. On va utiliser les différences finies.

On rappel la définition de la dérivée

df
dx

= lim
δ→0

f (x+ δ)− f (x)
δ

. (5)

Si l’on considère un fonction f définie sur un intervalle donné et que
l’on subdivise cet intervalle en N sous-intervaux de dimensions finie
δ (le pas d’espace), alors la fonction f est définie en chaque point k
de cet intervalle. On peut alors réécrire l’équation (5)

df
dx

= lim
δ→0

f (x+ δ)− f (x)
δ

=
f (k+1)(x)− f (k)(x)

δ
(6)
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ou f (k+1)(x) (f (k)(x)) est la fonction f évaluée au point k+1 (k) du do-
maine discrétisé. Ceci est un schéma dit progressif de différences fi-
nies ou la condition limite est évaluée en amont. L’équation (4) peut
être discrétisée et s’écrit de la manière suivante

h(k+1) = h(k) + δ

(
i
1− (hn/h(k))10/3

1− (hc/h(k))3

)
. (7)

On va considérer que la hauteur initiale correspond à la condition de
bord, soit h(0) = hn1 = 0,27 m. De plus on considère le pas d’espace
δ = 1 m.

Figure 8 – Solution numérique de l’équation de remous dans la deuxième
partie

On voit sur la figure 8 que la résolution numérique diverge autour
de x = 20 m, c’est-à-dire quand h→ 0,61 m qui est la hauteur cri-
tique. On va donc maintenant calculer la hauteur conjuguée par la
formule de conjugaison

h2

h1
=

1
2

(√
1 + 8Fr2

1 − 1
)

(8)

avec Fr1 = q/(
√
gh3

1). Cette courbe est présentée sur la figure 9.

Il faut maintenant déterminer le point d’intersection entre la courbe
conjuguée et la courbe de remous en aval du ressaut. Cette courbe
se calcule en résolvant l’équation 4 en régime subcritique, car on
sait qu’après le ressaut hydraulique l’écoulement change de régime.
Il nous faut donc une condition limite à l’aval loin du ressaut, par
exemple h0 = hn2 = 1,3 m en x = 20 m (au niveau du pont). On
utilise à nouveau l’outil ode45 de Matlab. On peut voir les courbes
sur la figure 10.
On peut voir qu’après le ressaut l’écoulement est partout à hauteur
normale. On va maintenant chercher la position de l’intersection
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Figure 9 – Solution numérique de l’équation de remous dans la deuxième
partie avec sa courbe conjuguée

Figure 10 – Solution numérique de l’équation de remous en aval du ressaut
avec sa courbe conjuguée

entre les courbes de remous et les conjugués. Le résultat est pré-
senté sur la figure 11. Graphiquement on estime donc la position du
ressaut à xr = 10 m.

Exercice 7 Rappel : on note hn la hauteur normale, hc la hauteur critique,
ū la vitesse moyenne de l’écoulement, S la section mouillée, χ le périmètre
mouillé et RH le rayon hydraulique.

1. La formule généralisée de Keulegan permet d’exprimer la contrainte
à la paroi τp (c.-à.-d. le frottement au fond) en fonction de la hauteur
d’eau h et de la vitesse moyenne de l’écoulement ū :

τp =
κ2

ln2(11h
ks

)
ϱū2.

En régime permanent uniforme, le frottement au fond reprend le
poids de la colonne d’eau (qui est la force motrice de l’écoulement) et
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Figure 11 – Solution numérique de l’équation de remous en aval du ressaut
avec sa courbe conjuguée

on peut écrire que τp = ϱgRh sinθ ≈ ϱgRH i pour des pentes faibles,
avec θ l’angle du fond avec l’horizontale et i la pente du fond. Ici,
on ne peut pas faire l’approximation RH ≈ h car le canal ne peut pas
être considéré comme infiniment large.

Pour h = h0, on a ū = Q/Bh0 et RH = h0B/(2h0 + B). On peut donc
écrire

ϱgRH i =
κ2

ln2(11RH
ks

)
ϱ

Q2

B2h2
0

,

ou encore

ks = 11RH exp

±
√

κ2

gRH i
Q2

B2h2
0

 .
On trouve ks = 1,56 m (l’autre solution de l’équation, ks = 147,44 m,
n’est pas réaliste, on rappelle que ks ≈ 2d90).

On remarque que h/ks < 10. La formule généralisée de Keulegan est
donc valide dans notre cas. Cependant, il faut garder à l’esprit que
cela ne signifie pas qu’elle est forcément la loi la plus adaptée.

2. D’après la loi de Manning-Strickler, Q = SR2/3
H

√
iK . Ici, S = Bh0 et

RH = h0B/(2h0 +B). En résolvant pour K on trouve K = 16,5 m1/3s−1.
Cette valeur indique que le canal est très rugueux.

3. En utilisant ks = 1,56 m et K = 16,5 m1/3s−1 on trouve

Q1 =

√
B2h2

1gRH i ln2(11RH
ks

)

κ2 = 17,1 m3/s
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pour la formule généralisée de Keulegan et

Q1 = KR2/3
H

√
iBh1 = 16,1 m3/s

pour la loi de Manning-Strickler.

4. On trouve
Fr =

Q1

Bh1
√
gh1

= 0,11

qui indique un écoulement subcritique (fluvial) et

Re =
4RH ū
ν

= 5 · 109

qui indique un écoulement turbulent.

5. Le débit dans chacun des canaux secondaires vaut Q1/2. En appli-
quant la loi de Manning-Strickler dans un des canaux secondaires
on peut donc écrire

Q1

2
= KR2/3

H

√
isBh2.

En exprimant RH en fonction de h2 et en résolvant pour h2, on trouve
h2 = 3,73 m.

6. En partant de la définition de la hauteur critique et de la formule du
nombre de Froude on trouve

hc =
(
Q1/2
B
√
g

)2/3

= 0,64 m.

On remarque que h2 > hc dans les canaux secondaires, ce qui indique
que le régime est subcritique (fluvial). Le régime ne change donc pas
du canal principal aux canaux secondaires. Il n’y a ni chute (passage
de fluvial à torrentiel) ni ressaut hydraulique (passage de torrentiel
à fluvial).

7. Doivent figurer sur le schéma la hauteur d’eau h (c.-à.-d. la surface
libre), la hauteur normale hn et la hauteur critique hc pour chaque
bief ; ainsi que les éventuels ouvrages hydrauliques et ressauts hy-
drauliques.
Ici, de l’amont vers l’aval,
— h = hn loin de l’embranchement (régime permanent uniforme) ;
— hc < h < hn à l’approche de l’embranchement (la hauteur diminue

mais il n’y a pas de changement de régime, c.-à.-d. que h ne croise
pas hc) ;

— après le changement de pente, h tend vers la nouvelle valeur de
hn (le régime redevient permanent uniforme loin de l’embran-
chement).
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Figure 12 – courbe de remous qualitative au passage du canal principal
aux canaux secondaires.

Puisque le régime est subcritique (fluvial) dans les deux biefs, h et
hn sont toujours au dessus de hc.

8. Par soucis de simplification, on note ici Q le débit, h la hauteur d’eau
et i la pente dans chacun des canaux secondaires.
Dans le cas de la section trapézoïdale on a
S = h(b+ 3h) pour la section mouillée,
χ = b+ 2h

√
10 pour le périmètre mouillé et

RH = h(b+3h)
b+2h

√
10

pour le rayon hydraulique.

La loi de Manning-Strickler permet d’écrire

Q2 − S2R4/3
H K2i = 0

On note f (h) cette fonction. La solution peut être approximée par la
méthode itérative de Newton qui dit que

hn+1 = hn −
f (hn)
f ′(hn)

.

On calcule donc f ′(h) :

f ′(h) = −2
dS
dh
· SR4/3

H K2i − 4
3
S2 dRh

dh
R1/3
h K2i

d’où

f ′(h) = −K2iS

(
2

dS
dh

R4/3
H +

4
3
S

dRh

dh
R1/3
h

)
avec

dS
dh

= b+ 6h

et
dRh

dh
=
b2 + 6hb+ 12h2

√
10− 6h

√
10

(b+ 2h
√

10)2
.
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La valeur initiale h0 de h est obtenu avec l’hypothèse d’un canal infi-
niment large (Rh ≈ h) et d’une section rectangulaire simple (S = bh).
Pour Q = 8 m3/s, K = 16,5 m1/3s−1, i = 0,01 et b = 3 m, on trouve

h0 =
(

Q2

b2K2i

)3/10

= 1,38 m.

On iterre ensuite jusqu’à convergence de hn+1 :

h1 = h0 −
f (h0)
f ′(h0)

= 1,1335 m,

h2 = h1 −
f (h1)
f ′(h1)

= 1,0695 m,

h3 = 1,0751 m, h4 = 1,0741 m, etc.

Astuce : il est utile d’utiliser la touche ANS de sa calculatrice à la place
de h pour automatiser le calcul : >> ANS− f (ANS)/f ′(ANS).
h converge vers 1,07 m. Le nombre de Froude vaut 0,37, le régime
est subcritique (fluvial).
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